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The velocity distribution function within a shock wave 

By G. A. BIRD 
Department of Aeronautical Engineering, University of Sydney 

(Received 21 March 1967) 

The structure of normal shock waves in a gas composed of rigid sphere molecules 
is investigated by numerical experiments with a simulated gas on a digital com- 
puter. The non-equilibrium between the temperatures based on the longitudinal 
and lateral velocity components is studied and the results compared with the 
theory of Yen (1966). Details of the velocity distribution function are presented 
for a shock of Mach number 10. The distribution functions for both the longitu- 
dinal and lateral velocity components are plotted for a number of locations in 
the shock profile and are compared with the equilibrium distribution. 

1. Introduction 
Problems in gas dynamics which involve significant changes in flow properties 

over distances of the order of the mean free path are amenable to a direct simula- 
tion Monte Carlo method which has been developed by the author. Although the 
shock structure problem has already been treated (Bird 19651, this was in the 
early stages of the development of the method, and a number of significant 
modifications have since been made to it. These refinements have reduced the 
computing requirements by more than an order of magnitude so that the method 
can now be readily applied on any modern medium- to large-sized computer. In 
the case of the shock wave problem, this increased speed has not only led to an 
increase in the accuracy of the shock profile determination, but has enabled the 
details of the velocity distribution function to be obtained. 

The approach is to conduct numerical experiments with a model gas on the 
computer. The real gas is simulated by the order of a thousand rigid sphere 
molecules which may be thought of as a representative sample of the many 
billions of molecules in a real shock wave. The positions and the velocity compo- 
nents of the simulated molecules are stored in the computer and typical collisions 
are computed among them as a time parameter is advanced. The desired steady 
flow is obtained as the large time solution of an unsteady flow set up by the appli- 
cation of appropriate boundary conditions. In  the present case, the computation 
of collisions starts at zero time, the molecules having been set up as a uniform 
stream at the required upstream Mach number. A specularly reflecting plane 
piston is inserted into this flow at zero time with its face normal to the flow direc- 
tion. The velocity of the piston is set equal to velocity downstream of a steady 
normal shock wave at  the stream Mach number. The transient effects due to the 
instantaneous application of the boundary conditions die out, leaving a steady 
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normal shock wave in the flow. It is interesting to note that the point of inflexion 
in the density profile of this shock is always located a t  the point of insertion of the 
piston. 

2. Description of method 
The flow is in the positive x direction and the simulated region extends from 

- bh, to + bh,, where h, is the upstream mean free path and b is sufficiently large 
to locate the boundaries well outside a shock wave centred at  the origin. This 
region is divided into a number of cells which are made sufficiently narrow for the 
change in flow properties from one side of each cell to the other to be small. Since 
the problem is one-dimensional, it is necessary to store only the x position 
co-ordinate for each simulated molecule. The three velocity components and the 
cell number are also stored. 

The first step is to generate the initial, or zero time, configuration of simulated 
molecules. The molecules are distributed uniformly between the upstream 
boundary at x = - bh, and the origin. This means that all locations in this range 
are equally likely for each molecule and the x co-ordinate of the nth molecule, x,, 
is obtained by generating a random number r and setting 

x, = -rbh,. 

The sequence of random numbers is rectangularly distributed between 0 and 1 
and is used in a number of procedures throughout the program. The velocity 
components are those appropriate to a gas in Maxwellian equilibrium and with 
a stream velocity in the x direction such that its Mach number is equal to the 
desired shock Mach number M,. The probability of an individual peculiar velocity 
component having a value u times the most probable molecular speed at the free- 
stream temperature is proportional to exp ( - uz). The ratio of this probability 
to the maximum value of the probability (which occurs for u = 0) is also equal to 
exp ( - u2). The required distribution for each set of peculiar velocities may 
therefore be obtained through the general procedure for probabilistic variables 
(Bird 1966). 

The molecules are then allowed to move and to collide among themselves. The 
two processes are uncoupled by computing collisions appropriate to a time 
interval At, and by then moving the molecules through distances appropriate to 
At, and their instantaneous velocities. The distortion produced in the molecular 
paths by this approximation is small as long as At, is small compared with the 
mean time between collisions. This time will be of the order of (na2Nw,)-l where 
N is the number density, a is the molecular diameter and wTm is the mean relative 
velocity of the collision pairs. A value of At, is chosen much less than an esti- 
mated mean time between collisions and is verified by recording the actual mean 
collision time during the running of the program. 

Since the change in flow properties over the width of each cell is small, the 
molecules in a cell at any instant may be regarded as a sample of the molecules 
at the location of the cell. The relative location of the various molecules within 
the cell can then be disregarded and the collision probability of a particular pair 
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of molecules within the cell depends only on their relative velocity.? A pair of 
molecules is chosen at  random from those within the cell under consideration and 
is retained or rejected in such zt way that the probability of retention is propor- 
tional to the relative velocity v,. When a pair is retained, a typical collision is 
computed between the two molecules and the new velocity components are stored 
in place of the old ones. The random selection of impact parameters is particularly 
simple for rigid sphere molecules since all directions for the new relative velocity 
vector are equally probable. For each collision, the time counter for this cell is 
advanced by 

At = (2/rVc) x (TO-~NV,) -~ ,  

where N, is the actual number of molecules in the cell. Collisions are computed in 
the cell until the time counter has advanced through At,. When this procedure 
has been carried out for every cell, the overall time is advanced through At, and 
the molecules are moved through appropriate distances. 

The set of molecules in each cell will change as the molecules are moved and 
appropriate conditions must be applied at the boundaries of the region being 
simulated. The upstream boundary at x = - bh, is treated as a source of molecules 
with velocity components representative of the downstream moving molecules 
in the equilibrium free stream. The distribution function for molecules crossing 
a surface is different from that for those within a volume. For a velocity com- 
ponent in the stream direction of u times the most probable thermal speed, the 
ratio of the probability to the maximum probability is 

exp [Q + &U{ U - (U2+ 2)4} - ua], 2(u+ U )  
u + (U2+ 2)* 

where U is the ratio of the stream velocity to the most probable thermal speed. 
Consideration is restricted to positive values of U + u since only the downstream 
moving molecules are generated. Any molecule which moves back upstream 
across this boundary is regarded as being ‘lost ’ and is removed from the store. 
The downstream boundary is a specularly reffecting wall which at  zero time starts 
moving from the origin with velocity Up which is related to Ms and the upstream 
speed of sound u, by 

2=- ( 1 + -  Y ) .  
a, a s  

After the piston passes beyond the downstream limit of the simulated region at  
x = bh,, the piston location is restored to x = bh, at the end of each time step. 
The molecules which finish beyond x = bh, during the time step are removed 
from the calculation. 

The time required for the piston to reach the downstream boundary approxi- 
mates the time required to set up the steady shock wave profile. The required 
flow properties can then be sampled. The statistical scatter can be reduced by 

t The reasoning behind the procedure adopted to choose the second molecule for a 
collision pair in the earlier treatment (Bird 1965) of the shock wave problem was incorrect. 
The actual procedure used in later work on two-dimensional steady flows (Bird 1966) was 
also incorrect. 
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the averaging of a number of samplings which are separated by the time interval 
Ats. This interval should exceed the time required for the slowest section of the 
flow to traverse one cell. 

The key to the simulation is the procedure which selects the molecules in a 
collision pair according to the correct probability and then advances the time 
parameter by the appropriate amount for each individual collision. In  this way, 
an appropriate set of collisions is computed for any distribution function of 
molecular velocities. Only two approximations are made. The first is the un- 
coupling of the molecular collisions and motion and this becomes exact as Atm 
tends to zero. The second is the assumption of uniform properties across the cell 
and this disappears as the cell width tends to zero. There has not been any sign 
of instabilities induced in the flow as a result of the statistical fluctuations, even 
though runs have been made with as few as six simulated molecules in each cell. 

The computations were carried out on an English Electric KDF-9 computer, 
a typical run lasting approximately 20 min. 

3. Results 
Typical results for the density profile through the shock wave are shown in 

figures 1 and 2.  The agreement between the Monte Carlo result and the Navier- 
Stokes solution (Gilbarg & Paolucci 1953) is well within the expected statistical 
scatter for a shock Mach number of 1.5. As expected, the thickness increases 
beyond the Navier-Stokes value as the shock Mach number increases and 
figure 2 indicates that, at  Ms = 10, it is also slightly greater than the Mott-Smith 
thickness (Mott-Smith 1951). The most critical assumption made in the method 
is that implied by the choice of the second molecule in a collision pair from any- 
where within the cell. The computation for the M, = 10 case was therefore carried 
out for a number of cell widths. The results in figure 2 show that there is little 
systematic change in the shock profile with cell width even when the latter 
becomes almost comparable with the width of the wave. 

An indication of the degree of non-equilibrium within the shock is given by the 
difference between the temperature T, associated with the longitudinal compo- 
nents of the thermal velocities and the temperature T, associated with the lateral 
components. These quantities were therefore sampled in addition to the overall 
temperature T. Typical results are shown in figures 3 and 4 for shock Mach 
numbers of 3 and 10 respectively. These results are in good agreement with the 
theory of Yen (1966) which predicts a maximum longitudinal temperature of 
4.28 for M ,  = 3 and 42.1 for Ms = 10. 

The velocity distribution function was sampled for the shock of Mach number 
10 and is shown in figures 6 and 7 for each of the five locations marked on the 
velocitj- profile in figure 5. In  plotting the distribution function f ,  for the longi- 
tudinal velocities in figure 6, the peculiar velocity component vz has been non- 
dimensionalized by dividing it by (2RT,)B where R is the gas constant. Similarly, 
in figure 7, the lateral peculiar velocity component v, has been divided by 
(2RT,)&. The values of T, and T, at the five locations are shown in figure 4. The 
equilibrium (Maxwellian) distribution function is included for comparison as a 
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solid line. Broken lines have been drawn through the points for locations B, C and 
D only as an aid to clarity, since the statistical scatter is such that some of the 
minor variations in these curves may not be significant. 

Location A is situated upstream of the shock wave and both longitudinal and 
lateral distribution functions agree, within the statistical scatter, with the 
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FIGURE 1. Density profle through shock of Mach number 1.5. 

0, model gas; -, Navier-Stokes. 
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FIGURE 2. Density profile through shock of Mach number 10. Model gas with cell width 

0 ,  ah,; 0, -&l1; A, A,: - , Navier-Stokes; ---, Mott-Smith. 
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FIGURE 4. Temperaturc non-equilibrium in shock of Mach number 10. +, longitudinal 
temperature ratio ; x , lateral temperature ratio ; 0 ,  overall temperature ratio ; 8, Rankine- 
Hugoniot downstream temperature. 
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FIGURE 5 .  Velocity profile through shock of Mach number 10 showing 

locations at which the distribution function was sampled. 

v,/(2RTx)* 

FIGURE 6. Longitudinal velocity distribution function for shock of Mach number 10. 
0, location A; x , B; A, C ;  +, D; B, E: ~ , Maxwellian distribution. 
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equilibrium distribution. In  fact, the departure of these points from the equi- 
librium distribution gives an indication of the probable scatter in the other 
distributions. 

The second location B is situated just within the shock wave profile where the 
velocity is barely affected but where the longitudinal temperature ratio has risen 
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FIGURE 7. Lateral velocity distribution function for shock of Mach number 10. 
0, location A; x ,  B; A, C; + ; D; ., E: ~ , Maxwellian distribution. 

to approximately 4.2. The distribution function shows that this temperature rise 
is almost entirely due to a long ‘tail ’ of molecules with large negative longitudinal 
peculiar velocity components. Since the velocity is positive in the direction of 
motion, this tail represents those few molecules that have been appreciably 
slowed by collisions in this region of the wave. The lateral distribution function 
also exhibits a high-speed tail at  this location, but, since the lateral temperature 
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ratio is only 1.6, the magnitude of these peculiar velocity components is much 
smaller. 

The third location C is situated well within the wave and the negative ta.il of 
the longitudinal distribution function is thicker and shorter. However, the longi- 
tudinal temperature ratio now exceeds 17 so that the magnitude of the peculiar 
velocities has increased. There is a marked asymmetry in the distribution func- 
tion with the most probable velocity having a small positive value and a shallow 
second peak occurring on the negative side. The lateral distribution function now 
shows a more marked high speed tail and a higher central maximum. 

At the centre of the wave where location D is situated, the distribution func- 
tions are showing a tendency to return to the equilibrium shape. This is most 
marked with the lateral function and the longitudinal function remains asym- 
metric with the most probable velocity shifted even further to the positive side. 
Finally, while the location E is situated well within the wave at  it point where the 
lateral and longitudinal temperatures have not reached equilibrium, the distribu- 
tion functions have returned almost to the equilibrium shape. 
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